Tag Archives: hair loss cure

Good News Monday: Bye-Bye Baldness

And did you know that shorter men are more likely to be prematurely bald? That seems very unfair.

Photo by Andrea Piacquadio on Pexels.com

Cure for baldness may be coming after discovery of a protein that fuels hair growth

by Study Finds

CAMBRIDGE, Mass. — A scientific discovery may make the “comb over” a thing of the past for people losing their hair. Harvard researchers say a cure for baldness is on the horizon after scientists uncovered a protein that fuels hair growth.

The breakthrough could lead to a cream that fuels an unlimited supply of locks for the follicly-challenged. In experiments, mice successfully sprouted three times as many hairs by surgically removing their adrenal glands. The small organs above each kidney release the stress hormone corticosterone, the rodent equivalent of cortisol. This stops the protein GAS6 in its tracks.

Stress reactions such as worry, anger, and anxiety have long been connected to male pattern baldness. Researchers even estimate about a quarter of COVID-19 survivors suffer hair loss due to the shock of infection.

“Stress hormones suppress growth in mice through the regulation of hair follicle stem cells,” says professor of stem cell and regenerative biology and study corresponding author Ya-Chieh Hsu in a statement to SWNS.

The study, appearing in the journal Nature, identifies the process that underpins hair loss for the first time and reveals how to reverse it.

“Chronic, sustained exposure to stressors can profoundly affect tissue homeostasis, although the mechanisms by which these changes occur are largely unknown,” researchers write in their report.

“The stress hormone corticosterone—which is derived from the adrenal gland and is the rodent equivalent of cortisol in humans—regulates hair follicle stem cell (HFSC) quiescence and hair growth in mice.”

Turning back the clock on hair’s lifespan

Study authors explain the hormone regulates dormancy and activity of hair follicle stem cells (HFSCs) in mice. In the absence of systemic corticosterone, the little cavities where each hair grows enter substantially more rounds of the regeneration cycle throughout life.

“When corticosterone levels are elevated, hair follicles stay in an extended rest phase and fail to regenerate,” Prof. Hsu tells SWNS. “Conversely, if corticosterone is depleted, hair follicle stem cells become activated and new hair growth occurs.”

An analysis discovered corticosterone suppresses production of GAS6. In the absence of the hormone, it boosts proliferation of hair follicles.

“Restoring the expression of GAS6 could overcome stress-induced inhibition of hair follicle stem cells – and might encourage regeneration of growth,” Prof Hsu notes. “It might therefore be possible to exploit the ability of HFSCs to promote hair-follicle regeneration by modulating the corticosterone–GAS6 axis.”

Throughout a person’s lifespan, hair cycles through three stages, growth (or “anagen”), degeneration (“catagen”), and rest (“telogen”). During anagen, a follicle continuously pushes out a hair shaft. In catagen, growth stops and the lower portion shrinks, but the hair remains in place. During telogen, it remains dormant.

Under severe stress, many hair follicles enter this phase prematurely and the hair quickly falls out. This lifespan is much shorter in the corticosterone-free mice than controls; less than 20 days compared with two to three months.

Curing hair loss due to stress

Their follicles also engaged in hair growth roughly three times as often. However, researchers restored their normal hair cycle by feeding the subjects corticosterone. Interestingly, when they applied various mild stressors to the controls for nine weeks, corticosterone rose and hair stopped growing. These stressors included tilting their cage, isolation, crowding, damp bedding, rapid lighting changes, and restraining. Injecting GAS6 into their skin reinitiated hair growth with no side-effects.

“These exciting findings establish a foundation for exploring treatments for hair loss caused by chronic stress,” adds Prof. Rui Yi, a dermatalogist at Northwestern University and not involved in the study.

The study also reveals GAS6 increases expression of genes involved in cell division in HFSCs.

“So, the authors might have uncovered a previously unknown mechanism that stimulates HFSC activation directly by promoting cell division,” Prof Yi continues. “In aging skin, most progenitor cells harbor DNA mutations – including harmful ones that are often found in skin cancers – without forming tumors.

“It will be crucial to see whether forced GAS6 expression could inadvertently unleash the growth potential of these quiescent but potentially mutation-containing HFSCs,” Yi concludes. “Modern life for humans is inevitably stressful. But perhaps, one day, it will prove possible to combat the negative impact of chronic stress on our hair, at least – by adding some GAS6.”